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Rx&h type differential equations of motion are derived for systems with one- 
sided link& Derivation is based on the speciat method of link e4iminaUon 
using a nonsmooth irrevexdble change of genera&M coordinates. Obtained 
equations were determined over an infinite time interval, and obviate the 
necessity of resorting to the method of adjustments usually applied in the 
analysis of such systems, Examples of solutions of problems by t&e proposed 
method are given. 

Let up consider a mechanical system of the form 

L V, q, b), Q G, q, Qh f 6 d > 0, q, Q es Rh (1) 

whese L is the Ligrangian, Q is the gexieraiized force, and f is, without lors of 
generality, a scalar function which deffna the generalized link. 

Changing variablcr in that system and passing to new generalized coordinate8 alters 
the ltnk equation. Let UI aim at finding a change that would eliminate the conttraints 
on the new variable& After such change the equations of mot& generally contain 
AGUE and the sohations lose the property of infinite c~~aU~ to the right. 

We have the problem of finding a change of variables and a dcacripuve function 
that would eliminate the cons&a&b on new vadables and yield differenUaX equatians 
on the basis of a descriptive function which would be free of singularities and to deter- 
mine soh&ions over an infinite time intervaL (The term descriptive function denotes 
a scalar function of time and phase coordinates which permits the derivation of the 
equation of motion, the Lagrange, Hamilton, Rcuth, Gibbs, and others functions are 
example8 of descripuve fuactians). 

If function f (t, q) is smoth, there exists a smooth change of variabl- Q+’ 
such that the inequality that defines the link can be reduced to the form r1 > 0 

(an example of such change is the transformation r, = f (8, q), r, = qs, . . ., 
rn = qnt wlme rj and q1 are components of vectors r and q , reapectfvelyf. 
It is obviously necessary to impose on arch transformations additional conditions of 
nondegeneracy in the region of variation of variables in which the motion ia consider- 
ed. 

We assume that system (1) paressea these properties. We separate out the compon- 
ent of vector q which appeanr ~JI the inequality, and introduce for it the special no- 
tation q1= s. For~ere~g Wrn~eA~we~~~o~ti~ (qm,. * *t 

qn)’ = J/. IWe and in what follows the prime denotes traxqosiUon (all vectors are 
cauidered to be column vectors). 
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It3 the new notation system (1) as2umea the form 

L (t, s, y, s*, y’), S @, s, Y, f, d), Y (4 ss Y* $9 ~‘1, s > 0, s EZ R’, C-3 
y E Rn-’ 

where S and Y are generalized forcea car d&g tocoordinates S and y. 
The system Lagrangian L can be assumed not to cant&u the linear form of gener- 

alized vel~ties, if ail forces with a gurmtfi;eb p&e&W are included in the gener- 
alized forcea. In that case it can be represented as 

(3) 

Taking into accumt the above uotation we mite the expr&ou for the ~g~~~ 
as 

L =p; va (as’” + 2twy’ + y”‘A-‘y’) + u (t, s, y) (5) 

We substitute general&4 momenta far @aeal&ed velaiMea y” and Mzuluce 
in the anaiyst the E&5&h ftrncf&xx. ~~~~g (5) we obtaia g*. We have 

p = aLlay* = s’b f- A-$‘, y’ = A (p - $b) (6) 

R* = L (t, 3, y, s’, y’) - p’y’ = ‘/, (a - b’Ab) sgB - V2 p’Ap -+- (7) 
s*p’A b + U (t, s, y) 

We apply the nonsmooth sub&it&ion 

$==JXj (8) 

The ambiguity of inverse transformatiou of (8) does not subsequently lead to any 

difficulties, since thk nece$sity for it does not arise. This substitullon autonocrtically 

satisfied E+(2) of the [q&em tith] link for any z , 
With the above ~~~~~ taken into account the F@uth fimction p] atSumf~ the 

form 
R (t, t, y, i, p) = R* (t, 1 z[, y, x0 S@I t, p) = Rt, + z’p’ Ab sgnx ES 

4l = ‘jr (Q - b’Ab)x’* - l/s P’AP + u 0, I x I, Y) 
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8y virtue of (8) the derivative of f x 1 at zero in the ~ff~~t~~~ of S with 
respect to time is additionally defined in conformity with the expreardon 

. 
f = x 

sgn 5. 
since the generalized force X which corresponds to the new generalized coordin- 

ate x is obtained from the equation of balance of powers Xx* = SS’ = SX’ sgn x, 
hence X = Ssgnx. 

Since in the system with the new variable effect of link is eliminated, the equations 
of motian based on the R&h function are of the formof Lagrange equation with variable 
xland of Hamilton’s equatton with variables y1 and p. The remarkable property of 
~~th function (9) i, that in spite of the nonsmooth character of substitution (91, he 
equatfom of motion determined by that fimction do not have tfngularfttcr of the delta- 
fiurcti~ type= Other descriptive f’uncttons (the Lagrange and Hamilton functi~ztf 
do not have such property, and with them ~~~~~~ (8) is ineffective. 

Let us write down the equations of motion 

By virtue of (9) we have 

t3 aR a3R d altp 
dtw-az=dt ax’ 

--+$. + (-&&+)x~p~dbsgnx 

BI this formula we calculate the last term separately by differentiating x*p’ A b sgnx 
aa the generalized function 

( d a 
2737 - -&) x*p’db sgn x = & (p’Ab) sgn x - x’p’ & (Ab) sgn x 

fn which the terms tbat could lead to singularities of the delta-fimctton type have 
can&led out_ The rule of ~f~a~~ of complex generaltzed functiond ~~~~ 
= x’d sgn x/&, applicable when x* (t) ia a continucrut function was used here. 

Tht continuity of x* (t) is not incompatible with the following equations of 
motion: 

which are the sought equations of motion of the considered system with the ideal one- 
sided link. They have dfscontinuities of the first kind only, and determine solutions 
over an inflnfte time interval, repreaentiug phenomena at the beginning, during and 
at the end of motion con&rained by the link. 

ln the analysis of the solution for the motion at the beginning of restraint by the 
ltnk (the discontinuity surface of the right-hand rider of system (10)) we distinguish 
twocases: a)whenx==O andthevelocity x*#O, and b)when x-0 and 

i = 0. In the f5rst case a shock is geuerated In the system when the link constraint 
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begins to act, and all gwemlized WI&U s’ and y’ become diwor&inuous at that 
instant. Motiaar of tystem (2) have titMI tbt fdtig pr+rti#, 

1, ** At the instant of shock all gtnetariud mome&t that corn*poad to word&- 
ates sot subjected to link cwtraints (-momenta p ) ace contfnu~ TU is obvious 
from the second equation of qstem (10). This propwty was origi&iy eaWWed by 
APP~R PI. 

2’. The sqwrc of velocity of the variable subjected to the link oonrtrsint does 
not become d&oo&inuau at the instant of sho& 

This is so beewe by virtue of the fW of EC& (10) x’ . is a cantioata\lr faaction 
of time* and I = is@z im~~t 9.8 = 39 is also a contlnrtwr ~~‘ 

3”. The k&et& ezwgy of the qfshbcn t not *-at the iWant of &a&. 
wb~~~inthcBrooftbsnotatsons_‘,y,”iurd T_ aad s+‘, II+.“4 T, for 

the vekx%ies and kiuetic energy ?.mfom and after tBs rhoek, mpectiv%ly. Em= (5) 
we then have 

T+ = ‘/% (us;” + Za+’ b’y,” + y;! A -“y,‘) (11) 

&I C~~~~ with p~operti~ 1’ and 2’ we have 

s; b f A-‘y; = s-3 + A -‘y_‘, s; = - s_’ 

from which 

II+ * = 2s_’ Ab + y_* (W 

The subatita&ion of (12) into (11) yields 

T, = ‘fo ius_=* - %_*b’ (&.*A b 4 y_‘) -I- (%_*A b + y_*)‘A -1 x 
(%_*A b + y-*)1 = Va (UP + 2s_‘b’y_* + y-“‘.&_‘) = T, 

When s==Oand x*z 0 ~~~at~e~~~e~t~~~ 
of shock, Sum&atly m&a ulww link cmrtwlxl fr pa&&e for wm& time. Tile 
Lagrang$an pait oft& system fr th@ automatic#ly tatWed by z = 0, whUe its 
~~1~ part defines the motion under the Ltnk co&raint. 

Such motion continuer as long aa the inequality 

-$ @‘A4 + +&(p’Ap)-S -++ 0 (13) 
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x = 0 for all t. This nonuniqueness of solutions for certain initial conditions is 
the natural consequence of the degeneracy of the substitution a = 1 x 1 when x = 0. 
The derivation of solutions for piecewise-continuous systems, and the theorems on the 
existence and uniqueness of these appear in [2]. 

As the first example of derivation of Eqs. (10) we consider the simple pendulum 
with a one-sided link (Fig. l), i, e. a pendulum in the form of a point-mass suspended 
on an inextenslble string. Its motion is defined here in polar coordinates (r, Y), where 

Y is the angle. Distance of the point-mass from thesuspension pointis bounded by 
the relation r < I?, Using the notation 8 = R - r we obtain the following system 
of form (2): 

L = i/2m [Sr -k (R - S)2i!ql f mg (R - S)CCq& 8 > 0 

from which in conformity with (4) and (9) we have 

a = m, b = 0, A-1 = m (R - 8)’ 

RO = ii2mz3 -p2(2m)-1(R-lzl)‘2+mg(R-\It()cosy 

Equation (10) for the pendulumnow assumes the form 

m.z”fG(t, y, p)gnz=O, G(z, y, p)=p2m-l(R-~zI)-*+mgcosy (14) 

?4 ’ = pm’ (R - It I)“, p’ = - mg (R - (3 I)sing 

For moiions constrained by the link z = 0 and ,G (z, y, p) > 0 , and the first 
equation becomes an identity, while the second and third ~oume the form 

g’ = pmelR*, p’ = - mgR sin lo 

which are equatiaas of the simple pendulum. At the instant at which G (5, I, p) 
changes its sign the [motion of the ] point ceases to be controlled by the link, The 
trajectory consisting of sections of motion constrained by the link and free of that 
ccnstraint satisfies system (14). As previously indicated the trajectory with + = 0 

I , 
4 3 ii ‘1 

/& ’ 

e/ . ’ 

\ / ! 
\ / / 
‘&_ _I__.-’ 

Fig. 1 Fig. 2 

(for all t ) also satisfies it independently of the linh reaction sign. 



Y WI = 0, and p(O)=& ~e~~~of~~m~ #z~Ooasai p~~Owwith 
5 satiafyi~ the equation of the form 8” f g sgn x =+ 0 which is obtainad from (14). 

It can be shown that fta general %&&ion is of the form 

where fuuSion II (5) will be d&erm&x@d below, The coefficients a and B are 
arbitmxy conHaM of integrati~ Sub8tUution of this soii~tion into s 3= 1 t 1 yields 
the sol&on for the variable s . 

Exampies of ~~~~g systems with one-sided l&&s are provided by the so- 
called ~br~~rn~ct systems. The flog example &aws the ~~~~~ of the 
proposed method for obtair&g solutioat fo# such syatemt. 

Let us considez the fomd oaiziUa_ of a bdtrm&c asci&xto~ with a rigid Uniter 
(Fig, 2). The distance between the maas in its ~~durn po&tion on the @ring and 
the limiter face is A (which can be of arb&ary tiepi). In %he theory of vibro-impact 
systems the cquatioar of motion of sucir oscfllator =e oaually of the form 

s”tkr’+Q”s*SIesinot, s<h 
9’ (r_*) = - s’ (t+*jt s (Pf = A 

‘Ott t&s eaampie we arrmme the coef%ci~t of rwtitatfon to be @tY* 
The above equations of motion are not diffexentiai ~a~ se the condit- 

ions at the boundasy contain time t* of the oscil.%a@ impact 0x1 the limiter, and &is 
ia an integral of motion, These equationa are, more-over, nonlinear, since they do 
not satisfy the SlIpeSpoBitiCxI p&Acipk. 

Apply~~ the de$c&ed abevc method and U&Q the tra mation 

s- A-Jxl 

we obtain for the motion of the o~~iuator equatins of the standard Catchy form 

5’ = z, 2‘ = - hz - I;;% -t_ SPAsgnx - esgnxainwt W 

which are casual equati aad determine the motion fa t ez (-oo,oc), 

We assume the quantiffes h, e, and A to be small,, and agate in (16) variable% 
using as the mbatftutfon eq~ationa the solution (with k = e 2=~ A = 0) of tht generat- 

ing system 
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I#’ = 0 (M (q,) = sgn Cost) 

which is standard for systems with one slow variable r and two fast phases cp and 

$0 We shall analyze that system by the method of averaging. Since the system 
has discontinuities of the first kind, the use of the averaging method is admissible[3]. 
Let us consider a resonance of the arbitrary form no - mB = x in which n and m 
are integers and X is a small quantity (frequency difference). 

In conformity with the procedure of resonance analysis we introduce the slow phase 
8 = n9# - mcp from which 

\p =n -l tmcp + 0) 

Substituting (19) into (18) and averaging with respect to cp for n = 1, m = 2k and 
k = i, 2, . . ., we obtain 

r’ = - br + acose, 8’ = x + cr+ - ar%iiB 

4kQA C - (20) 
x 

For other values of n and m there are no resonances. 
The solution of equztlons of the statiarary mode in accordance with (20) is of the 

form 

(21) 

sin 0, 5 + r, + + 

Since r. > 0 , hence cx < 0 , and consequently, when A > 0 , a st.ation- 
ary mode exfsts in the preresonance region (no - mB < 0) and when A < 0, it 
exists beyond the msonance regiaa (MU - mQ > 0). One more condition of exidence 
of the resonance mode is, obviously, of the form a2 (6’ + x*) - b’@ > 0 or in terms 
of input parameters 

a’ (4k’ - I)” > n’SYA*hs (A’ + 4x*)-’ 

Thiscmditimshowsthatruronac~oftheform n--l, m=2k,and k=i, 
2 . . existwhen h=O or A=O. Butwhen Ah#0,noresonancesexist 
a&r the number k has reached a certain value. 

Let us inveatfgate the stability of the obtained solutions (21). Taking into accamt 
Eqs. (21) of tie stationary mode, fez the characteristic equation of the variational 
system corresponding to system (20) we obtain an equation of the form 

I* + 2bA + b’ + x (Xro -t chwl = 0 

which yields the necessary and sufficient conditions of asymptotic stability of solution 
(21) 
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b > 0, r’B > - a. (bO + XT’ 

Compar@g the second of these conditio&~~ with (21), we cow&e that th b-chco 
Of the ainprttwk- tnstsncy cl&WcWc that cOmapd to the upper rillg fii (21) are 
stable. 

Beazfng in mfnd (X6), (I?), and (191, WC write down ahsl rollctioa in of* 
original variable 6 (Q and 0 are detumfned by famuia .(21)) 

d= A - r. 1 cos (2k)“’ (cot - 0,) 1 

This solution is asymptotically cloee to the exact cue when A, h, e -+ 0 , 

Let us compare this s0lut.W with the utact solution presented. for in&wce, in 
[4] in the form 

wbicbcol!reapoudstothcrprincipalre#nance IQ -2with b==O. 
The relatioa between the notation used in the last formula and that wed here is 

defined at follows; 

B - r+J2, I; = (o - x)/(2@, r * A, F/k - de (e, - x)* 

compa&on of so&&on (21) in the Wicatsd not&on (A = 0) with the urct mm& 
showsthatinbothcatsa~ isthelharformof r andofWticdh#ac@ment Flk of 
the f&m (22), with 

x 25 
‘I= ~~(1-226) ’ as-3a(l-2Q 

in tbc cam of the-tmte mlution9 
The r&r&e emxs of the approJdnurtaly calculatad co~mcieta q and as in 

function 6 are tabulated below 

f 0.2 0.3 0.4 
9;: . 

065 0.6 0.7 0.8 
Aa,1 % 79.8 36.2 13.9 5.3 9.8 17.5 24.i 3613 
Aa,e % 5i.8 49.2 5.2 i.7 9.2 i.2 10.2 34.8 - 

since c= 0.5 corrcapon& to the exact rewamce tuning, thev figurn show the 
reamably hi@ acuamcy of ta&mm 

ktusnowcaJdderoac Mslk Letqmt-@)b+ d 

in the form 
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If f (t, q) is smooth, then as previously, this system can be reduced to the form 

L (t, 8, yr s’, Y'), 22 09 8, Y9 s’, Y’), y 09 s9 Yl s-9 Y') 

n/2 > s 2 - nl2, s E R’, y E Rh-’ 

We introduce function 

U (2) = sgn cos 2, II(t)= fsgncosrdz 

0 

and then effect the nonunooth &8titution 8 = II (4. 
The sukquent reason&g ix analogok to the previau, except that in all formulas 

andequatiaks II(z) istobesubstitutedfor 121, andM(z) for sgat . Thus, for 
example, the equations of motion of the system with the indicated Iink an of the form 
(10) afta the above substitution. 

Ideas on the atendon of the obtained here resuIt.8 to the case of nonideal one- 
sfded links can be found in 15, Sj. 

We note in conchidon that the use of nonsmooth substitutions in the two considered 
casesisimporht. Forinstance, if s=~*iswedinsteadof s=Itl, thenforaay 
descriptfve functiau the differential equations of motion determine the motion only 
up to the first instance of the Iink constraint becoming effective. 
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