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Routh type differential equations of motion are derived for systems with one~
sided links, Dexivation is based on the special method of link elimination
using a nonsmooth irreversible change of generalized coordinates. Obtained
equations were determined over an infinite time interval, and obviate the
necessity of resorting to the method of adjustments usually applied in the
analysis of such systems, Examples of solutions of problems by the proposed
method are given,

Let us congider a mechanical system of the form
L(#tgd),Q0te9)1ta>0 ¢,0=R m

where L is the Lagrangian, @ is the generalized force, and f is, without loss of
generality, a scalar function which defines the generalized link.

Changing variables in that system and passing to new generalized coordinates alters
the link equation, Let us aim at finding 2 change that would eliminate the constraints
on the new variables, After such change the equations of motion generally contain
singularities and the solutions locee the property of infinite continuation to the right.

We have the problem of finding a change of variables and a descriptive function
that would eliminate the constraints on new variables and yield differential equations
on the basis of a descriptive function which would be free of singularities and to deter~
mine solutions over an infinite time interval, (The term descriptive function denotes
a scalar function of time and phase coordinates which permits the derivation of the
equation of motion; the Lagrange, Hamilton, Routh, Gibbs, and others functions are
examples of descriptive functions),

If function f (¢, g) is smoth, there exists a smooth change of variables g¢g-—>r1
such that the inequality that defines the link can be reduced to the foorm r, > 0
(an example of such change is the transformation r; = f (¢, @), s = @4, . . -,

rn = gn, where r; and g; are components of vectors r and ¢ , respectively).
1t is obviously necessary to impose on such transformations additional conditions of
nondegeneracy in the region of variation of variables in which the motion is consider-
ed,

We assume that system (1) possesses these properties, We separate out the compon~
ent of vector g which appears in the inequality, and introduce for it the special no-
tation ¢y =s. For the remaining components we use the notation (s - -

gn)’ = y. Here and in what follows the prime denotes transposition (all vectors are
considered to be coumn vectors),
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In the new notation system (1) assumes the form
Lt,sysv),Sts, .59 Y{sy,5,¥0),s>0,s= R, (2
y e Rt

where § and Y are generalized forces corresponding to coordinates § and V.

The system Lagrangian [. can be assumed not to contain the linear form of gener-
alized velocities, if all forces with a generalized potential are included in the gener-
alized forces. In that case it can be represented as

L= |, y"*‘TB;‘E'*'U(t'S’ ¥) (3

where T = T (¢, s, y) is the matrix of kinetic energy and U is the force function,
We decompose matrix 7' in blocks as follows:

T______ga b'ﬁ a=Ty, b =|Tw....,T Tl (4)
b oAy’ A1={Ty, i,j=2,...,n

Taking into account the above notation we write the expression for the Lagrangian
as

L =1, (as* + 250’y + y"'A-Y) + U(t, s, y) (5)

We substitute generalized momenta for generalized velocities 3" and introduce
in the analysis the Routh function, Differentiating(5) we obtain  y°. Wehave

p=20Lldy =sb+ A"y, y =4 (p — s'b) (6)
Using for p° its expression in (6) we obtain for the Routh function

R* = L(t,s,y,8,¥)—py =Yy(a— bAb) 2 — Y, p'dp + ()
sSp'Ab + U, s, y)

We apply the nonsmooth substitution
§ = } x ‘ (8)

The ambiguity of inverse transformation of (8) does not subsequently lead  to any
difficulties, since the necessity for it does not arise, This substitution automatically
satisfied Eq,(2) of the [system with] link for any z .

With the above substitution taken into account the Routh function {7] assumes the

form
R(t, z,y,2,p)= R*(t,|z|,y, o' sgnz,p) = R, + zp" Absgnz (9

Ry =1y (a — Y'Ab)z"* — Yy, p'Ap + U (¢, | 21, ¥)
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By virtue of (8) the derivative of | 2 | at zero in the differentiation of $§ with
respect to time is additionally defined in conformity with the expression & = 2
sgn .

Since the generalized force X which corresponds to the new generalized coordin-
ate 2 is obtained from the equation of balance of powers Xz' = Ss° = 8z’ sgn z,
hence X = & sgn z.

Since in the system with the new variable effect of link is eliminated, the equations
of motion based on the Routh function are of the form of Lagrange equation with variabie
Ziand of Hamilton's equation with variables yiand p. The remarkable property of
Routh function (9) is that in spite of the nonsmooth character of substitution (8), the
equations of motion determined by that function do not have singularities of the delta-
function type. Other descriptive functions (the Lagrange and Hamilton functions)
do not have such property, and with them substitution (8) is ineffective,

Let us write down the equations of motion

d R 3R _ . . _ OR ._0R
T T X Y= PEgptY

By virtue of (9) we have

d aR aR — d aRo aRo d 3 a »_ 7
T~ = T — e+ (5w Fp Absgne

In this formula we calculate the last term separately by differentiating z'p’ Ab sgnz
as the generalized function

d @ AN\ ., d ., e 9
(37 35 — 55) ¥P'4bsgnz = -3 (P'Ab) sgn z — 2'p’ - (Ab) sgn z

in which the terms that could lead to singularities of the delta-function type have
cancelled out, The rule of differentiation of complex generalized function d sgnz/dt
= z'd sgn z/dz, applicable when z° (f) isa continuous function was used here,

The continuity of z° (£) is not incompatible with the following equations  of
motion;

d OR, dR d y e @
s Zh o [s— L @A)+ 5 (A)]sgns (10)

dR, . d R
o 44 g (PAD)sgnz + ¥

which are the sought equations of motion of the considered system with the ideal one-
sided link, They have discontinuities of the first kind only, and determine solutions
over an infinite time interval, representing phenomena at the beginning, during and
at the end of motion constrained by the link,

In the analysis of the solution for the motion at the beginning of restraint by the
link (the discontinuity surface of the right-hand sides of system (10)) we distinguish
two cases: a ) when z == () and the velocity 2° 3= 0, and b) when z = ( and

z" = (. In the first case a shock is generated in the system when the link constraint

.

y = -—-%%“—-—-a:’Absgnx, ' =
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begins to act, and all generalized velocities s" and y* become discontinuous at that
instant, Motions of system (2) have then the following properties,

1.°. At the instant of shock all generalized momenta that correspond to coordin-
ates not subjected to link constraints (momenta p ) are continuous. This is cbvious
from the second equation of system (10). This property was originally established by
Apple [11.

2°, The square of velocity of the variable subjected to the link comstraint does
not become discontinuous at the instant of shock,

This is so because by virtue of the first of Eqs. (10) z° .is a continuous function
of time, and §* = z’sgn z implies that s'2 = z'? is also a continuous function,

3°, The kinetic energy of the system is not discontinuous at the instant of shock.

We introduce in the proof the notation s, y "and T_ and s.°, y," and T, for
the velocities and kinetic energy before and after the shock, respectively. From (5)
we then have

T, =g (a8, + 25,7 'y, + y,7 47%y,)) (1
In conformity with properties 1° and 2° we have
s, b+ A4y =5+ ATy, s = — s
from which
y, =25 Ab+y” (12)
The substitution of (12) into (11) yields

T, =Y, las® — 250" (2s°Ab + y_*) + (254 + y)'4-1
(25 °Ab + y ) =Y, (as_"* + 250y + y'Ay) = T-

When z = 0 and z°" = ( the system at the beginning of link constraint is free
of shock, Subsequently motion under link constrain is possible for some time,  The
Lagrangian part of the system is then automatically satisfied by z = 0, while its
Hamiltonian part defines the motion under the link constraint,

Such motion continues as long as the inequality

d , 1 9 ,, ou . (13)
— (PAb) + 5 5 (P'Ap) — S ——- >0

is satisfied. The left-hand side of this inequality repsesents all those terms of the first
equation of system (10) that are independeat of velocity z'. These terms countain
the multipier sgn r . When inequality (13) is satisfied, its left-hand sides repres-
ents the link constrain reaction. As soon as this inequality is viclated, the system 1is
free of the link constraint,
1t should be noted that in the case of motions that initially occur along the link dnd for

which at some instant of time inequality (13) {s revened there is, in addition to the
solution of system (10) that corresponds to the true motion, also a solution in  which
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z =0 forall ¢ This nonuniqueness of solutions for certain initial conditions is
the natural consequence of the degeneracy of the substitution § == |z | whenz = 0.
The derivation of solutions for piecewise-continuous systems, and the theorems on the
existence and uniqueness of these appear in [2].

As the first example of derivation of Eqs. (10) we consider the simple pendulum
with a one-sided link (Fig,1), i.e. a pendulum in the form of a point-mass suspended
on an inextensible string, Its motion is defined here in polar coordinates (r, y), where

y is the angle, Distance of the point-mass from the suspension pointis bounded by
the relation r < R. Using the notation s = R — r we obtain the following system
of form (2):

L=12m s + (R — s + mg (R — s)cosy, s > 0

from which in conformity with (4) and (9) we have
a=m, b=0, A l=m (R —s)?
Ro=1/2mz® — p? @2m)" ' (R — |z|)* + mg(R — |z |)cos y
Equation (10) for the pendulumnow assumes the form

mz** + G (z, y, p)sgnz =0, G (z, y, p) =pm 1 (R— |z ||® + mgcosy (14

y=pm TR —|z)% p"=—mg(R — |z |)siny

For motions constrained by the link z = (¢ and ‘G (z,y, p) > 0 , and the first
equation becomes an identity, while the second and third assume the form

¥y = pm RS, p'= — mgRsiny

which are equations of the simple pendulum. At the instant at which @G (z, v, p)

changes its sign the [motion of the ] point ceases to be controlled by the link, The
trajectory consisting of sections of motion constrained by the link and free of that
constraint satisfies systern (14), As previously indicated the trajectory with z =0

Fig. 1 Fig.2

(for all ¢ ) also satisfies it independently of the link reaction sign.
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Let us consider the typical motion with shocks in svstem (14), i
we select the folbwing?;ﬁai data{at £=0): (D) = z,, ({) <:) x.fé‘z%? %12 0,

¥(0) =0, and p(0)=0. The solution of this system is y = 0 and p = 0 with
r satisfying the equation of the form z" -gsgnz =0 which is obtained from (14),
1t can be shown that its general solution is of the form

? . —
2 (1) = aSn(a)dz*%. o=] Eiso
Q
where function II () will be determined below. The coefficients ¢ and 8 are
arbitrary constants of integration, Substitution of this solution into s==|z| yields
the solution for the variable s .

Examples of engineering systems with one-sided links are provided by the so-
called vibro-impact systems. The following example shows the effectiveness of the
proposed method for obtaining solutions for such systerns,

Let us consider the forced oscillations of a harmonic oscillator with a rigid limiter
(Fig.2). The distance between the mass in its equilibrium position on the spring and
the limiter face is A (which can be of arbitrary sign), In the theory of vibro~impact
systems the equations of motion of such oscillator are usually of the form

s+ hs” - Qs =gsinwt, s <A
SN =—s ({t*) st =4

In this example we assume the coefficient of restitution to be equal unity,

The above equations of motion are not differential equations, because the condit-
jons at the boundary contain time t* of the oscillator impact on the limiter, and this
is an integral of motion, These equatfons are, more-over, nonlinear, since they do
not satisfy the superposition principle,

Applying the described above method and using the transformation

s== A —[z| as

we obtain for the motion of the oscillator equations of the standard Cauchy form

=2, ¢ = e Bg sz*}c 4 QA sgnz — g sgn z sin wi (16)

which are differential equations and determine the motion for & & (—oo,%}

We assume the quantities 4,e, and A to be small, and substitute in (16) variables,
using as the substitution equations the solution (with & =€ = A = () of the generat-
ing system

(x, 2) — (r, O} « = reosy, r = — rQsing {r > 0) 17

In new variables system (15) assumes the form
P o= — hrgindp — QAM (@)sing -+ QM (@)singsing (18)
¢ = Q — hsingcosy — QFIAM (@) cos® & (FR)TIM (@lsinpeosy
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V' = o (M (p) = sgn cosp)

which is standard for systems with one slow varlable r and two fast phases ¢ and
¢ . We shall analyze that system by the method of averaging, Since the system
has discontinuities of the first kind, the use of the averaging method is admissible 3] .
Let us consider a resonance of the arbitrary form nw — mQ = y in which » and m
are integers and X is a small quantity (frequency difference),
In conformity with the procedure of resonance analysis we introduce the slow phase
6 = np — mg from which

¥ = n7t (mp + 6) (19

Substituting (19) into (18) and averaging with respect to @ forn = 1, m = 2k and
k=1,2,..., weobtain

r"= — br 4+ acosf, 8' = ¥ + cr! — ar-lsind
h — 4ke(—1)F 4hQA

b= = U = 20
5 ‘T Oae—1) ‘== (20)

For other values of n and m there are no resonances,
The solution of equations of the stationary mode in accordance with (20) is of the
form

cx | Va®+4 ) — bic

b
r:——b,+x,:|: o N 0050‘,=-a—'r0, (21)

[
sin6°==—Z'—r0+ -

Since ro >0 , hence cy <0 , and consequently, when A > 0 , a station-
ary mode existsinthe preresonance region (no — mQ < 0) and when A <0, it
exists beyond the resonance region (nw — mQ > 0). One more condition of existence
of the resonance mode is, obviously, of the form a? (b® 4- ¥%) — b%* > 0 or in terms
of input parameters

e? (4Kt — 1) > adQA%S (k8 4 4y)-1

This condition shows that resonaces of the form » =1, m = 2k,and f = 1,
2,... existwhen h=0 or A =0, Butwhen Ah=zt0 , no resonances exist
after the number % has reached a certain value.

Let us investigate the stability of the obtained solutions (21)., Taking into account
Egs. (21) of the stationary mode, for the characteristic equation of the variational
system corresponding to system (20) we obtain an equation of the form

A 26k + B - (xro + O)rgt = 0

which yields the necessary and sufficient conditions of asymptotic stability of solution
(21)
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>0, rg > — cx (5 + x3)™?

Comparing the second of these conditions with (21), we conclude that the branches
of the amplitude- frequency characteristic that correspond to the upper sign iri (21) are
stable,

Bearing in mind (15), (17), and (19), we write down the solution in terms of the
original varable s (r; and 6 are determined by formmla {21))

g = A — py | cos (2k)"1 (0t — 6y) |

This solution is asymptotically close to the exact one when A, h, g 0.
Let us compare this solution with the exact solution presented, for instance, in
{4] in the form

sm—aQrEaQFk a=Tm | a=piget ()

which corresponds to the principal resonance m == 2 with 4 = 0,
The relation between the notation used in the last formula and that used here is
defined as follows:

a=ry2, [ = (0 — N/QR0), r=A, Flk=ie(w— )"

Comparison of solution (21) in the indicated notation (4 = 0) with the exact reslt
shows that in both cases ¢ is the linear form of r and of static displacement F/k of
the form (22), with

_—— 2%
M=TA—20 ' BTHRU—2x)

in the case of the -approximate solution,
The relative errors of the approximately calculated coefficients o; and a4y in
function { are tabulated below

g 0.2 0.3 0.4 0.45 0.55 0.6 0.7 0.8 1
Aa, % 79.8 36.2 13.9 6.3 53 98 175 241 363
Az % 51.8 19.2 5.2 1.7 02 1.2 10.2  34.8 —

Since [ = 0.5 comesponds to the exact resonance tuning, these figures show the
reasonably high accuracy of the approximate computations.

Let us now consider one more type of one-sided link. Let system (1) be specified
in the form

L(t,g,8)Q(tya a) ey »f{t,q)>e 9 Q=R
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If (¢ g) issmooth, then as previously, this system can be reduced to the form

L,s, y s, y.)v S, sy s¥),Y (ti 54,8, %)
A2>s>—n/2, s R, y= R"?

We introduce function

x
M (z)=sgncosz, II(x)= Ssgncos:c dz
0

and then effect the nonsmooth substitution s = II (z).

The subsequent reasoning is analogous to the previous, except that in all formulas
and equations II (z) is to be substituted for |z |, and M (z) for sgnz . Thus, for
example, the equations of motion of the system with the indicated link are of the form
(10) after the above substitution,

Ideas on the extension of the obtained here results to the case of nonideal one-
sided links can be found in [5, 6],

We note in conclusion that the use of nonsmooth substitutions in the two considered
cases is important, For instance, if s = 2% is used instead of s = |z] , then for any
descriptive functions the differential equations of motion determine the motion only
up to the first instance of the link constraint becoming effective.
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